WebSphere
Application Server:

A foundation for

on demand computing

WebSphere® Application Server is the
foundation for IBM’s middieware software
portfolio. It has evolved rapidly from a simple
extension for Web servers and a server
runtime for business objects to the IBM
distributed operating system for mission-
critical computing and the leading application
server in the industry. WebSphere Application
Server plays a central role in the
transformation from a distributed operating
system to a distributed on demand operating
system. This transformation is achieved by
forging extensions to the WebSphere
Application Server foundation for the grid-
computing infrastructure, rich Web-based
interaction models, service-oriented
architecture, autonomics, business process
management, and dynamic provisioning and
utility management. This paper describes
elements of the WebSphere Application
Server architecture and how this architecture
provides a foundation for the on demand
computing infrastructure and application
environment.

There is little doubt about the importance of ¢-busi-
ness on demand®.' The information technology in-
dustry has come to a juncture with the next major
step being one toward greater productivity— in terms
of improving both the productivity of information
systems specialists and, more importantly, the pro-
ductivity of businesses that depend on information
technology for conducting their business. This next
step forward will be cnabled by e-business on de-
mand* through more efficient utilization of comput-
ing facilities by sharing resources among many lines

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

0018-8670/04/$5.00 © 2004 1BM

by E. N. Herness
R. H. High, Jr.
J. R. McGee

of business, and by interconnecting those facilitics
into a computing grid that will cnable access to more
computing capacity on demand. This potential is then
extended through e-business on demand by allow-
ing lines of business to be interconnected as a scam-
less flow of information and business processing and
by providing concrete definitions of customer bus-
iness processes so that customers can adjust those
processes rapidly as business conditions change.

The role of WebSphcre® Application Server® @ in
enabling on demand computing is significant in two
ways. First, it is a container for application compo-
nents whosc very programming model design enables
a high degree of virtualization. This is achicved in
the underlying information system by scparating the
presentation and business logic of the application
from the infrastructure hosting that logic.” Second,
the application scrver is a resource manager—it man-
ages application components as resources, and man-
ages them in the context of the computing and in-
formation resources they depend on, including the
execution environment, data systems, connections,
transactions, security contexts, RAS (reliability, avail-
ability, and serviccability), messaging systems, and
other application components. Both of these prop-
ertics form a critical backdrop to cnabling on de-
mand computing,.

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) cach reproduction is done
without alteration and (2) the Journal reference and [1BM copy-
right notice arc included on the first page. The title and abstract,
but no other portions, of this paper may be copicd or distributed
royalty free without further permission by computer-based and
other information-scrvice systems. Permission to republish any
other portion of this paper must be obtained from the Fditor.

HERNESS, HIGH, AND McGEE

213

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

WebSphere Application Server supports four ma-
jor models of application design: multitiered distrib-
uted business computing, Web-based computing, in-
tegrated enterprise computing, and service-oricnted
computing. All of these design models focus on sep-
arating the application logic from the underlying in-
frastructure; that is, the physical topology and ex-
plicitaccess to the information system is distinet from
the programming model for the application. Use of
underlying resources within the information system
is abstracted in the programming model by high-level
interfaces and logical resource references and by en-
couraging scrvice processing through declarative pol-
icics in the components. The appearance of control
is given but in a way that can be mapped to physical
resources by the application containers in Web-
Sphere Application Server based on its management
algorithms. Exploiting the component models de-
fincd in the WebSphere Application Server program-
ming model makes programmers more productive,
but it also cnables the application to be managed by
WebSphere Application Server. The application
componcents can be located within the topology as
needed on the basis of the resources required by the
application, as measured by the availability and ca-
pacity of the underlying computing facilitics, and on
the basis of the relative requircments of the appli-
cation as compared to other applications in use by
the enterprise.

WebSphere Application Server provides support for
deploying the application, managing the resource re-
quirements for the application, ensuring the avail-
ability, isolation, and protection of the application
from other applications and their resource rcquire-
ments, and monitoring and securing the application.
In the following sections we will survey various as-
pects of WebSphere Application Server and how it
enables computing for e-business on demand. In-
cluded is a discussion of how applications are man-
aged and deployed, how the application server is
monitored to determine how efficiently it is using re-
sources and how this affects workload management,
how applications can be profiled to cnable the ap-
plication server to serve its resource dependencies
more cfficiently, the infrastructure technology the ap-
plication scrver usces to ensure high availability and
failover, how this capability extends out to the edge
of the network, and finally the role the application
server plays in the area of grid computing,

Other aspects of WebSphere Application Server and
much of th¢ WebSphere platform, including ap-
proaches to obtaining maximum scalability from

214 HERNESS, HIGH, AND McGEE

WebSphere Application Server,® how to improve
performance by caching,’ information integration, '’
portals," business process choreography, ™ discon-
nected and rich clients, " and connectors and adapt-
ers' are discussed at length throughout this issue
of the IBM Systems Journal.

Application models for e-business

One major characteristic of an on demand c-busi-
ness is that it is dynamic. It changes at the rate and
pace of demand-—demand for business scrvices, de-
mand for information, and demand for computing
capacity. An application will survive in this sort of
cnvironment only if it is designed for change. There
arc many application design patterns, ' including the
principles of structured and object-oriented pro-
gramming, that describe techniques for achieving
high degrecs of reuse and component sharing.

However, going from reuse to the kinds of dynamic
rchosting that can occur as resources arc shifted
across a data center, or to handle the distribution of
workload across application partitions, or to handle
rapid changes in business processes that can occur
in an on demand computing environment requircs
strict adhercnce to the best design disciplines. In an
on demand computing environment, databascs and
legacy data systems in the Enterprise Information
System (F1S) can be moved frequently to accommo-
datc surges or drops in demand for onc system or
another. It may become necessary to partition work-
loads and route different transactions to different
computers. There may be many instances of the same
application in the same computer complex to serve
different customers. The steps and activities that arc
performed for a given business situation can vary
from day to day, or even for different business cus-
tomers on an individual basis. Undcr other circum-
stances it would be very difficult to program an ap-
plication to toleratc this kind of variability.

Letting programmers add value to their businesscs
by enabling them to focus their attention more on
business domain concerns and less on the underly-
ing computing infrastructure is one of the fundamen-
tal tenets of WebSphere Application Server. In ad-
dition WebSphere Application Server is a 2EE**
(Java 2 Platform, Enterprise Edition)-compliant ap-
plication server supporting the entire breadth of the
Java®* language and J2EE specification, including
support for a Web-services-based service-oriented
architecture. The J2BEE programming model sup-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

ported by WebSphere Application Server makes it
much easicr to build applications for on demand
computing specifically because it separates the de-
tails from the underlying infrastructure. It does this
with the component- and service-oricnted program-
ming model offered by J2EE. By leveraging that sep-
aration, WebSphere Application Scrver is able to of-
fer a broad range of scaling in its application server
implementation—from a single server installation all
the way up to multiprocessor, multihost, and mul-
ticluster installations.

To obtain maximum advantage as an on demand bus-
iness an application should follow the best-practice
patterns that have been espoused for e-business com-
puting'®—using the J2£E and WebSphere Applica-
tion Server programming model for component-
based, service-oriented, distributed, and message-
driven computing, and using business process
choreography for composition. The patterns for e-
business computing with this approach include:

Multitiered distributed business computing
Web-based computing

« Integrated cnterprise computing
 Service-oriented computing

Multitiered distributed business computing. The
valuc of multiticred distributed computing comes
from first structuring the application with a clean sep-
aration between the logic elements (presentation,
business, and data) and then leveraging the bound-
aries between these elements as potential distribu-
tion points in the application. This is cnabled with
a formal component model for business logic: En-
terprise JavaBeans®™* (EJB**). This component
model has several key benefits for application de-
velopment. Foremost, the component model pro-
vides a contract between the business logic and the
underlying runtime. The runtime is able to manage
the component.

The component runtime (also called the component
container) cnsures the optimal organization of com-
ponent instances in memory, controlling the life cy-
cle and caching of state to achieve the highest levels
of efficiency and integrity, protecting access to the
components, and handling the complexitics of com-
munication, distribution, and addressing. This same
principle of management applies to object identity,
transaction and scssion management, sccurity, ver-
sioning, clustering, workload balancing and failover,
and so on. Part of the EJB component model includes
the idea of a single-level-store programming model,

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

whereby the issues of when and how to load the per-
sistent state of a component are removed from the
client."” In many cases, the runtime has a much bet-
ter understanding of what is going on in the shared
system than any one application can cver have and
thus can do a better job of managing the component
and obtaining high performance and throughput in
the information system. The runtime does this for
the component developer; the programmer does not
have to worry about these details.

Web-based computing. Web-based computing s,
in some sense, a natural extension of the multitiered
distributed computing model, whereby the presen-
tation logic has been relocated in the middle tier of
the distributed computing topology and drives the
interaction with the end user through fixed-function
devices in the user’s presence. We refer to an in-pres-
ence, fixed-function device as a Tier-0 device in the
multitiered structure of the application. The most
common form of a Tier-0 device is the Web browser
on a client desktop. Pervasive computing devices are
emerging in the market in other forms as well, from
personal data assistants (PDAs) and mobile phones,
to intelligent refrigerators and cars (scc Figure 1).

Web applications exploit the natural benefits of com-
ponent-based programming to enable the construc-
tion of Web presentation logic that can be hosted
on a server platform and to achieve richer styles of
interaction than can be achieved with simple static
content servers. '® The Web application scrver was
originally conceived to extend traditional Web serv-
ers with dynamic content; that is, page content that
is derived dynamically by interacting with business
logic and back-end data systems. However, in the
course of developing these Web application servers,
we realized that the issues of serving prescntation
logic are esscntially the same as the issucs of serving
business logic. Through the usc of scrviets, " port-
lets,® and JavaServer Pages™* (Jsps**),”" we see this
model supporting both a presentation and a busi-
ness logic tier in the application server layer. As with
business logic, the purpose of the presentation logic
server is to accommodate many clients (in this casc,
Tier-0 clients) sharing a common implementation.

Integrated enterprise computing. Intcgrated enter-
prise computing is critical to retaining customer in-
vestments in past technologics. Few new applications
can be introduced into an established cnterprise
without some regard as to how they will fit with ex-
isting applications® and, by extension, the technol-
ogy and platform assumptions on which those ap-

HERNESS, HIGH, AND McGEE 215

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

Figure 1 Web computing model

PRESENTATION DEVICE

plications have been built. A close examination of

any enterprise will reveal a variety of applications
built on a varicty of underlying technology
assumptions.

As usual, the issucs of cross-technology integration
arc complex. In mission-critical environments, we
must address concerns about data integrity, secur-
ity, traceability, configuration, and a host of other
administrative issucs for deployment and manage-
ment. However, to support the productivity require-
ments ol developers, these complexities should be
hidden. The key programming model clements pro-
vided by WebSphere Application Scrver for enter-
prise integration are offercd in the form of Java 2
Connector Architecture (12CA)* and the Java Mcs-
saging Service (JMS),* both of which are part of the
I12EE specification. Figure 2 depicts this integration.

Another major advance in application integration
can be realized with the use of business process cho-
recography. Choreography is accomplished through
a scripting language (the Business Process Exccu-
tion Language for Web Services, or BPELAWS) that
describes how to sequence a number of service ac-
tivitics to form a workflow definition as depicted in
Figure 3. Activitics can be scrialized or executed in
parallel. A business process instance is instantiated
and forms its own state as it exccutes; that state can
be passed between activities in the flow. A business
process can be started, interrupted, resumed, and
terminated.

Inlooking at the problem of application integration
(or perhaps, more appropriately, lincs-of-business
integration) from the top, it is important to model

216 HERNESS, HIGH, AND McGEE

%

PRESENTATION ~ BUSINESS DATA LOGIC

LOGIC LOGIC

business process flows in a way that allows them to
be rapidly adapted to new procedures and oppor-
tunities; for example, to be able to model and then
rapidly modify the order entry process to perform
credit checks and to process partial orders without
having to rewrite cither the order entry or inventory
systems.”® Choreography lets us script the business
process, which makes it very easy to modify and im-
mediately execute changes in the implementation of
the process definition. Business rules, when com-
bined with choreography, can allow cven more flex-
ible processes to be defined.

Service-oriented computing. The scrvice-oriented
architecture (SOA) model suggests a type of appli-
cation where “business services” are exposed for use
both within and outside of an organization.” Scrvice-
oricnted architectures leverage the relative cohesive-
ness of a given business service as the primary point
of interchange between partics in the network. Ser-
vices can be associated with service-level policics so
they can be sccured, metered, monitored, and
tracked. We can combine the concepts of Web ser-
vices with J2EE to provide a managed component-
hosting environment for these kinds of applications.

Advances in the field of service-oriented computing
are heavily focused on Web services— cspecially on
Web Services Definition Language (WSDL), on the
Simple Object Access Protocol (SOAP), and Univer-
sal Description, Discovery and Integration (UDDI).
Thesc technologies combine to introduce business
scrvices that can be easily composed with other bus-
iness services to form new business applications. At
some level, Web services arc just a new generation
of technology for achicving distributed computing,

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

7I;€eproduced with permission of the:copyright owner. Further reproduction prohibited without permissionyy\wmanwv.manaraa.com

Figure 2 Integrated enterprise computing

A

APPLICAT
PTI

Figure 3 Business process choreography

HERNESS, HIGH, AND McGEE 217

er. Further reproduction prohibited without permissionyw\w.manaraa.com

and in that sense, they have much in common with
many of the other distributed computing technologies,
such as Opcen Software Foundation/Distributed Com-
puting Environment (OSI/DCE**), Common Object
J281 Remote Method Invocation/Internct Inter-Orb
Protocol (RMI/1OP**), that went before them.?
However, Web services differ from their predeces-
sors in the degree to which they deliberately address
a “loose coupling” model.™

We can measure the coupling of distributed appli-
cation components in at least threc ways:

* Temporal affinity
* Organizational affinity
* Technology afftinity

Temporal affinity. Temporal affinity is a measure of
how the information system is affected by time con-
straints in the relationship between its components.
It an application holds a lock on data for the dura-
tion ol a request to another business service, there
arc expectations that the requested operation will
be completed in a certain amount of time— data
locks and other similar semaphores tend to prevent
other work from exccuting concurrently. Tightly cou-
pled systems tend to have a low tolerance for latency.
In contrast, loosely coupled systems are designed to
avoid temporal constraints—the application and the
underlying runtime arc able to execute correctly and
without creating unreasonable contention for re-
sources even if the service requests take a long time
to be completed.

Organizational affinity. Organizational affinity pertains
to how changes in one part of the system affect other
parts of the system. A classic example is in the ver-
sioning of interdependent components. If the inter-
face of a component changes, it cannot be used un-
til the dependent components are changed to use
that new interface. In tightly coupled systems, the
change has to be coordinated between the organi-
zation introducing the new interface and the orga-
nization responsible for using that interface. The co-
ordination often requircs direet and detailed
communication between the organizations. In con-
trast, there is a high degree of tolerance for mis-
matches between components in loosely coupled
systems.

Another dimension of organizational affinity is the
degree to which the system has to be managed by
a single set of administrative policies. Tightly cou-

218 HERNESS, HIGH, AND McGEE

pled systems tend to requirc a common set of ad-
ministrative policies, most commonly handled with
a centralized administration facility to ensure con-
sistency of policy. The administration of loosely cou-
pled systems tends to be highly federated, allowing
cach party to apply its own administrative policics
and expressing the effects of those policics only as
“qualities of service” at the boundaries between the
organizations. Generally, the invoker of a service in
aloosely coupled system can make choices based on
the trade-ofls of costs, benefits, and risks in using an
available scrvice. Different providers with different
quality-of-service characteristics can supply the same
service, thus enabling commercial marketplace eco-
nomics to drive a scrvices community.

Technology affinity. Tcchnology aflinity addresses the
degree to which both partics have to agree to a com-
mon technology basc to enable intcgration between
them. Tightly coupled systems have a higher depen-
dence on a broad technology stack. Converscly,
loosely coupled systems make relatively few assump-
tions about the underlying technology needed to en-
able integration.

Allof these forms of affinity represent potential bar-
riers to the dynamism that occurs in on demand com-
puting systems. Avoiding them by adopting the prin-
ciples of loose coupling promoted by SOA is critical
in overcoming thesc barricrs.

Programming for e-business on demand. There is
often a temptation to take short cuts when building
applications to respond rapidly to an immediate op-
portunity or to disregard the morc powerful clements
of the 12EE programming model. In particular, we
sec many cases where scrvlet programmers directly
invoke system services or make direct database calls.
That method may save developers some time initially,
especially if programmers are familiar with these ser-
vices and have intimate knowledge of their database.
However, doing so also weds their application to that
specific set of scrvice technologies and database
schema. Thesc applications will be more brittle and
will not be able to fully benefit from the capabilitics
that WebSphere Application Server introducces for
on demand computing. To benefit from on demand
computing, the application must be structured to
avoid directly connecting to the resources it uscs.

Conversely, we recommend that application abstrac-

tion layers which attempt to hide the 1215 and Web
services programming model be very carefully de-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

signed and gencrally avoided. Although better ab-
stractions might offer some simplification to pro-
grammers, they also tend to inhibit the application
from taking advantage of some of the underlying flex-
ibility that is being built into the application scrver.
Specifically, it can be difficult to leverage quality-of-
service semantics that enable WebSphere Applica-
tion Server to manage components optimally when
those underlying component models are obscured
by higher-level abstraction layers. Often, we see
framework designers having to duplicate the very
same quality-of-scrvice declarations and container
management that arc inherent in the application
server itself.

Caches arc another good example. A number of new
capabilities related to workload management and vir-
tualization will be driven by e-business on demand.
Applications that build local caches and alter nor-
mal affinity rules will not be able to efficiently par-
ticipate in environments where work is dynamically
moved around a distributed system based on load
statistics. WebSphere Application Server has built-in
cache support and leverages and manages those
caches to ensurc optimal throughput and resource
utilization while maintaining a very high level of data
integrity. These properties are difficult to duplicate
in the application layers. Application and framework
developers often “get it wrong.” Moreover, even
when they “get it right,” they may be contravening
the inherent capabilitics of the application server.

When WebSphere Application Server knows about
all of the resources being leveraged, such as connec-
tors, databases, queues, JMS topics, memory, and disk
storage, the inherent virtualization capabilities in the
server can more readily balance workloads across
those available resources, move work around the sys-
tem, and provision additional resources on machines
in the network. If the server does not know about
the resources, it is not possible to provision new ca-
pacity without operator, administrator, or sometimes
even programmer intervention.

Finally, the description of applications and the ap-
plication architecture has been centered largely
around the current 12EE standards and Web services
standards. As more advanced applications arc con-
structed to solve business problems, they will make
increasing use of additional WebSphere program-
ming model cxtensions™ and other platform
capabilitics.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Developing and deploying an application to
WebSphere Application Server

The principles of virtualization can be defeated if
the processes for constructing a virtualized applica-
tion component are too difficult. In fact, we want to
make the process for creating a virtualized applica-
tion easicr than creating an application that makes
hard-coded assumptions about the resources and to-
pology in which it will exccute. The goal of Web-
Sphere Application Server is to simplify the devel-
opment and deployment process to cnable morce
rapid application construction and improve the cf-
ficiency of the development and debugging process,
specifically to encourage the construction of appli-
cations that are enabled for on demand computing.

We begin by recapitulating the development and de-
ployment process for component-based applications.
The development process is comprised of creating
two primary types of artifacts: logic clements and de-
clarative meta-data. Logic clements arc the code por-
tion of the application, captured in components such
as servlets, EIBs, Java classes, and the like. Declar-
ative meta-data is the information usually provided
in the form of an cXtensible Markup Language
(xML) document that controls the deployment and
execution behavior of the application. By specifying
information about how the logic clements should be
executed and bound to the runtime environment out-
side of the codc itsclf, an application gains greater
flexibility and adaptability to new problems and new
environments.

One of the most important forms of declarative
meta-data introduced by I2EE is the notion of re-
source or component references. InJ2EE, references
allow a level of indirection in the name of some re-
source that a logic element necds to use.™ For ex-
ample, if a servlet nceds access Lo a data source, the
servlet can refer to that data source using a logical
name of its choosing. Later, when the application
containing the scrvlet is installed onto the applica-
tion server, the administrator is able to choose the
physical database that will be accessed by that serv-
let (see Figure 4) and map that database to the Jog-
ical name selected by the programmer within his or
her code. At any time, the binding between the log-
ical and physical data source names can be modified
by the administrator without any change to the logic
of the servlet.

By providing indircction, the application logic is pre-
vented from being too tightly bound to a particular

HERNESS, HIGH, AND McGEE

219

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

Figure 4~ J2EE reference binding

JNDI NAME SPACE

java:comp/env/myDB s

3
i

BINDING

J2EE
COMPONENT

LOGICAL
REFERENCE

deployment environment, and the developer of that
application does not have to manually build an in-
direction mechanism. J2EE provides this indirection
mechanism for database connections, Web services,
J2CA resources, uniform resource locators (URLs),
LB, IMS topics and queues, and generically for any
object through the Java Naming and Directory In-
terface (JNDI) service.

Other forms of declarative meta-data include cach-
ing policy, transaction policy, sccurity policy (policy
to be applicd both to users of the application and
to the application logic itself), performance scttings,
persistent ficld information, and application profile
data (indicating how the application is expected to
be used by particular clients). Declarative meta-data
is also used to inform the system of the elements of
the application, such as which EJBs arc present, which
servlets are present, which URL should be used as
the default page for an application, and which mod-
ules make up the application. Because this informa-
tion is provided outside of the application logic, the
behavior of the application can more easily be mod-
ificd, and the logic elements can be reused in dif-
ferent applications with different functional and non-
functional requirements.

Deployment of an application is the process of in-
stalling an application into the application server and
making that application available for cxecution. De-
ployment is a multistep process, including:

[. Presenting the application for deployment and in-
spection so that its contents can be understood
by the runtime.

220 HERNESS, HIGH, AND McGEE

N

6.

“# jdbc/Databaset

DEPLOYMENT-TIME

PHYSICAL
REFERENCE

DATABASE

- Generating the additional logic clements required

to exccute the components of the application in
the system. This process uses the declarative meta-
data to decide which behaviors must be applied
to the component. For example, the meta-data
for container-managed entity EJBs indicates which
fields should be persistent, and the code gener-
ation process produces the actual logic to load
and store the clement in the databasc.

Binding the application to the environment after
code generation. Binding is the process of resolv-
ing any logical references in the application to
physical resources available in the environment
(for example, picking the cxact database that
should back a particular data sourcc).

. Deciding on which scrvers or clusters the differ-

entcomponents of the application should execute,
which is also done by binding. Sec “Management
and Provisioning” for morc information about
WebSphere clustering topology.

- Specifying configuration and tuning parameters

for the application that arc specific to this instal-
lation of the application (such as bean pool sizes)
by an application deployer in addition to the
binding information. This additional deployment in-
formation allows the server to be tuned for the par-
ticular application in a per-application manner.
Distributing the application to all of the machines
thatwill host the application and then starting the
application (the final step in deployment). Web-
Sphere Application Server does this automatically
from the deployment manager through a config-
uration synchronization protocol uscd between
the deployment manager and nodc agents. The
administrator can configurc the application serv-

IBM SYSTEMS JOURNAL, VOL. 43, NO 2, 2004

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

ers and nodes in their cell (a collection of ma-
chines enabled for WebSphere Application
Server) through the administrative console at-
tached to the central deployment manager. The
relevant configuration information, including the
EAR (Enterprise Application Archive) and JAR
(Java archive) files for the application itsclf are
then synchronized with each node in the cell.

At this point, the application is running and avail-
able for service. It is important to note that many
of the decisions made during deployment can be
modified at any time to adjust the system. For ex-
ample, bindings can be changed, and application
modules can be moved to different servers or clus-
ters. (Clusters are discussed in the section “Work-
load Management.”) Most of these changes can be
made without restarting the server by simply restart-
ing the application that was affected.

The deployment flexibility in both J2EE and Web ser-
vices provides the foundation for on demand enable-
ment of applications. In on demand computing en-
vironments, the system will make decisions about the
optimal configuration to meet the goals defined by
the administrator. Optimization includes both ad-
justing tuning parameters for a given application or
server and adjusting the assignment of applications
to servers and resources available in the cell. By us-
ing the indirection mechanisms described above, the
on demand system can adjust numerous parameters
of the application, such as the data source settings
for a particular database, the server or cluster on
which to exccute the application, and the tuning pa-
rameters for object pools and caches, without the
application itself being aware of the changes, and
without requiring the application to make any
modifications.

Let us discuss a particular cxample. In an on demand
system, the demand manager monitors the current
loading on the system. On the basis of the perfor-
mance data that are being collected, the systcm is
able to detect that a particular server (say, server A)
is undcrutilized. At the same time it might detect
that server B is overloaded, handling the requests
of multiple applications. On the basis of the described
deployment flexibility, the system could change the
server assignment binding of a particular application,
moving the application from scrver B to server A,
to better balance the load. When this happens, the
system will automatically move the binaries for the
application to the new machine, remove them from
the old machine, start the application on the new

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

server, and stop it on the old server. All of these
changes arc transparent to the application logic it-
self and to the uscrs of the application,

WebSphere rapid deployment. The deploymentand
configuration capabilities of WebSphere Application
Server and J2EE are powerful, but the addition of
new concepts and artifacts to the development and
deployment process increase the complexity of ap-
plication construction for individuals who are not fa-
miliar with J2EE. Therefore, some may be dissuaded
from using the full power of 12EE if they do not un-
derstand how to bring all the picces together. To help
facilitate the process, WebSphere Application Server
Version 6.0 will add a number of features to sim-
plify the development and deployment cxperience
for developers—-cnabling the “pay-as-you-go” no-
tion of on demand computing. Collectively, these fea-
tures are referred to as WebSphere Rapid Deploy-
ment (WRD). WRD introduces two key concepts:
annotation-based programming and deployment
automation.

Annotation-based programming. Annotation-based
programming is the notion of adding meta-data di-
rectly to the source code of a program and using that
meta-data to generate the additional artifacts of the
application. This approach simplifics development
by greatly reducing the number of artifacts that must
be created and maintained directly by the developer
and by reducing the amount of redundant informa-
tion between multiple artifacts.

As an example, consider the remote interface class
of an EJB. This class contains the method signatures
of the methods that should be exposed to remote
users of the EJB. The method signatures in the re-
mote interface arc essentially the same as the method
signatures in the EJB implementation class. If the de-
veloper changes the method signature of some
method in the implementation class of the EJB, the
same redundant change has to be madc to the re-
mote interface class. This extra step adds complex-
ity and the opportunity to make mistakes in the de-
velopment process.

With annotation-based programming, the developer
instead adds special tags to the EJB implementation
class to mark which methods should be made avail-
able on the remote interface. The remote interface
can then, as part of the deployment process, be au-
tomatically generated from the implementation
source code. This generation removes the redun-
dancy, reduces the opportunities for errors, and re-

HERNESS, HIGH, AND MCcGEE

221

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

duces the number of artifacts with which the devel-
oper must deal. This is the essence of annotation-
based programming. Currently, annotations will be
added to Java source code through Javadoc**-style
tags in comments within the code. For the above ex-
ample, the source code of a remote method would
look something like the following;

/ **

* @ejb.interface-method view-type=
remote

B

public String hello(String name)

[

1
return “Hello: ” + name;

With annotation-based programming, external files
would take precedence over the annotations con-
tained in the source code if the developer also pro-
vides some of the declarative meta-data through cx-
ternal XML files. As can be scen in this example, if
the developer changes the signature of the hello()
method, he or she will not have to change any other
artifact in the application. The remote interface au-
tomatically is updated to reflect the change. Thus,
the development process has become simpler to un-
derstand and less error prone, and the developer has
had to acquire less knowledge about J2FE and the
full complexity of artifacts involved. This simplifi-
cation is an important aspect of on demand
computing.

Deployment automation. Deployment automation is
the notion of automatically handling the deployment
process for the user, including code generation, com-
pilation, and installation tasks. The key feature of
deployment automation is the notion of an actively
monitored dircctory where any changes made to the
contents of the directory are detected by the system
and appropriate actions are taken on behalf of the
uscr to reflect the changes made. This capability en-
ables a simple drag-and-drop or edit-in-place deploy-
ment model, greatly simplifying the deployment pro-
cess. As an cxample, a developer can install a new
J2EL EAR file onto the server simply by copying the
EAR file into a monitored directory, and then the rest
of the deployment process will proceed automatically.

Of course, to automate some of these processes re-
quires the system to choose defaults for certain set-
tings that normally would be provided by the user.
With use of the knowledge acquired for on demand
management of applications, defaults can be cho-

222 HERNESS, HIGH, AND McGEE

sen that are appropriate for most applications. For
many applications, deployment follows a simplc pat-
tern, and there is no need to ask the user to provide
deployment data. For other applications, complex
analysis could be performed to infer the correct val-
ucs. The deployment automation is smart enough
to do the most cfficient action possible in the face
of the changes detected in the monitored directory,
thereby improving developer efficiency by reducing
the edit-compile-debug cycle time, a key goal of the
simplification aspects of on demand computing.

The combination of deployment automation and an-
notation-based programming cnables a powerful
model of on demand development. In this model,
the developer can edit a small number of logic ar-
tifacts (artifacts that arc predominantly business logic
artifacts) and have a fully compliant 265 applica-
tion constantly being constructed and deployed in
the background, making his or her latest changes
continuously available for debugging without any ad-
ditional manual steps.

Management and provisioning

The WebSphere Application Server management
and provisioning system is onc of the most impor-
tant components in supporting the paradigm of on
demand computing. The management system pro-
vides the fundamental capabilities to understand and
control the information technology (1) system. The
role of the management system is to provide infor-
mation about the current configuration of the Sys-
tem and to provide a mechanism to change that con-
figuration. In on demand computing, however, there
arc additional important requirements. First, the
management of the system must be accessible in a
standard way to cnable multiple systems to be con-
trolled together. Second, the system must be capa-
ble of being changed dynamically and of adjusting
to those changes transparently. Capabilitics are be-
ing added that leverage the standard interfaces and
configuration flexibility that alrcady exist in Web-
Sphere Application Server to enable it to participate
further in the on demand provisioning system.

After the application itsclf has been developed and
deployed, the ongoing cost and success of an appli-
cation in production depends largely on the casc and
ability of managing that application in the produc-
tion environment. The WebSphere Application
Scrver management system provides a unificd man-
agement view, called a single-system image, across a
multiprocess, multimachine, heterogencous deploy-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Reprodwl?jced with permission of the:copyright owner. Further reproduction prohibited without permissionyy\wmanwv.manaraa.com

ment environment.* It allows the system to be con-
figured, modified, monitored, and controlled through
a single point of administration from multiple ad-
ministrative agents, simultaneously and dynamically.

The core of the WebSphere Application Server man-
agement system is a data model that represents the
configuration of the cell. Currently, the data model
is embodied in a collection of XML documents on
the file system of the various machincs in the cell.
A central management process called the deployment
manager (dmgr) is provided, which maintains the
master configuration of the cell and provides a sin-
gle point of contact for controlling the cnvironment.
Each machine that is controlled by the dmgr con-
tains an agent process called the node agent. The
dmgr and the node agents collaborate to allow con-
trol and monitoring of the system and to perform a
configuration synchronization function. Each ma-
chine in the environment contains a copy of a subset
of the master configuration of the cell appropriate
for that machine, and the dmgr and node agents com-
municate to keep that copy synchronized with the
master copy.

For control of the system, WebSphere Application
Server exposes all of its management functions via
standard Java Management Extensions (JMX**)
MBeans.** 1MX is the Java standard application pro-
gramming interface (APT) for managing a system. The
core concept in JMX is the notion of a management
bean—an MBean. An MBean is a component that
allows access to the management data and opera-
tions of some portion of the system. MBeans expose
operations, attributes, statistics, and notifications.
JMX capabilitics allow the server and the cell to be
controlled and monitored.

WebSphere Application Server uses the JMX inter-
face internally to implement the management func-
tions of the product, but the interfaces arc also ex-
posed externally for use by other management
agents, such as the 1BM Tivoli* product. Accessing
these MBeans over multiple protocols is also sup-
ported, currently by SOAP/HTTP(S) (Simple Object
Access Protocol/HyperText Transfer Protocol [with
orwithout a secure connection|) and RMIIOP (Web-
Sphere Application Server Version 6.0 adds support
for SOAPIMS [Java Message Service]). The protocol
choices allow the user to selcct the quality of service
most appropriate for his or her environment. With
use of standard management interfaces WebSphere
Application Server is enabled to be controlled as part
of a larger systems management environment, allow-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

ing better control of an entirc production I envi-
ronment. JMX accessed by means of Web scrvices
provides the standard control mechanism required
by on demand computing.

For access to the WebSphere management system,
three primary clients are provided. For graphical
management, WebSphere provides a browser-based
interface to the entire management environment. An
example of the WebSphere administrative console
is depicted in Figure 5. This Web user interface (U1)
is implemented as a standard J2EE Web application,
using servlets, JsPs, and Struts (an open source frame-
work used in building Java Web applications). It is
packaged as an EAR file and installed just as other
applications are on the application scrver.

For command-line or scripted access, WebSphere
Application Server provides a tool called WsAdmin.
WsAdmin has both an interactive shell and the abil-
ity to exccute scripts. WsAdmin supports the creation
of administrative scripts in multiple scripting lan-
guages (currently JACL™ [Java Command Language]
and JPython**), allowing customers to choose the
scripting language with which they are familiar.

The final client is a programmatic API for accessing
the management system. The APt client allows cus-
tom management applications to be constructed that
can monitor and control WebSphere Application
Server. The administration APL client is perhaps the
most important client for on demand computing, al-
lowing external agents to be written that can mon-
itor and control the WebSphere platform.

The WebSphere management system is designed to
be very scalable, allowing uscrs to manage a large
installation of WebSphere Application Scrver serv-
ers. The system is designed to efficiently distribute
information and to minimize the amount of cross-
talk and interdependencies between processes. The
Web Ul is designed to allow viewing and cditing of
large topologies, providing features such as view sort-
ing, scarch, and filtering. This scalability is impor-
tant in allowing a production IT environment to be
managed centrally and in allowing partitioning ofan
cnvironment to be driven more by customer busi-
ness reasons than product technical constraints. The
Web Ul is also designed to be extensible, a key ca-
pability in on demand computing.

As more of the system is managed automatically, an

administrator’s role becomes less to manage indi-
vidual products and more to manage the I system

HERNESS, HIGH, AND McGEE

223

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

Figure 5 WebSphere Application Server Version 5.0 administrative console

O W@ G P foreons @G @ (30 1L

| ncdres: (8] tp:/lMtz:%?olaMsecwe.do

Administrative Consale §

‘ | User ID: rhigh Application Servers
|| RHIGHLT2Nletwork
| B servers

An application server is a server which provides services required to run enterprise applications. (il

Application Servers
J BIVErS Totak 11
Clusters. B Fiter
Custer Topoloay [Preferences

ow] _velos | start] stp

| 1o &

2
2
8
<

clzervert

ojojolojolololololalo

B I B IR 3 & 8 8 8 &

WebSphere Status (1]

WebSphere Huntime Messages | {"Claar Al 1
Total Al Messages: 181) Onew, Ototal D 0 pevy, O total i 181 new, 181 total

«Previgus Next» December 17, 2003 9:38:28 PM CST)

@ Preferences

as a whole. To make this change practical, the ad-
ministrator nceds a common administrative Ul that
crosses product boundaries and that is tailored to
the scenarios that the administrator encounters on
a daily basis. The Web Ut in WebSphere Applica-
tion Server Version 5.0 provides part of the foun-
dation for a unificd administration model that will
be available in the Version 6.0 timeframe, enabling
a common and consistent approach to middleware
management across the system.

As WebSphere Application Server moves toward on
demand cnablement, the key aspect of its manage-
ment system is its support for dynamic adjustment
of the configuration of the system. In WebSphere

Application Server Version 5.0, the management cm-
phasis was on dynamic workload distribution over
a relatively static configuration. In Version 6.0 and
in on demand computing, the emphasis shifts to en-
compass dynamic configuration changes based on dy-
namic feedback from a policy-driven management
agent. Although this shift cncompasses some signif-
icant new functions, it is built and predicated on what
exists today in WebSphere Application Server Ver-
sion 5.0.

On demand provisioning managers such as the 13M
Tivoli Provisioning Manager and 1M Tivoli Intel-
ligent ThinkDynamic® Orchestrator’” can use JMX
facilitics to acquire the information they need to

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

er. Further reproduction prohibited without permissionyw\w.manaraa.com

GRS ZL!L—*I

make decisions about how to dynamically control the
platform. (This monitoring capability is discussed in
the following section in more detail.) After an on
demand change is decided upon, the same JMX fa-
cilitics are used to provision that change on the run-
ning server. WebSphere Application Server will then
adjust to the new environment as the change occurs.
For example, if a new server is added to a cluster to
increase the performance of some application, Web-
Sphere Application Server will notify the workload
management system of the change in the cluster con-
figuration, allowing the new server to absorb its sharc
of the workload.

By exposing JMX and the administration client APIs,
WebSphere Application Server enables external con-
trol over the configuration of the system in responsc
to utilization and capacity policy assessment. The
provisioning manager assesses the utilization ol the
system against the policies that determine whether
achange is nceded. If warranted, it can initiate a con-
figuration change immediatcly, reducing the time for
making these sorts of changes down to minutes or
hours as opposed to the days or weeks that it might
take an administrator to understand and respond to
a shift in demand under manual circumstances.

Monitoring and application response
measurement

In order to manage an on demand environment
dynamically, the on demand system must have ac-
curate and consistent data about the current state
and condition of the 1T cnvironment. It is not pos-
sible to balance an arriving workload across a com-
puting grid without an idea of the current loading
of servers within that grid. Therefore, the ability to
monitor a collection of systems and to understand
their current operation is the critical first require-
ment of on demand computing. This monitoring
environment must be accurate, must provide con-
tinuous access to information in the system, and must
be lightweight enough to not negatively impact the
performance of the systems being monitored.

WebSphere Application Server provides monitor-
ing capabilitics as part of its management system,
such as monitoring of the current life-cycle status for
servers, applications, and their components (¢.g.,
which servers are running), monitoring of problems
that arc occurring in the cell (e.g., alerts, errors, warn-
ings), and monitoring of performance (both aggre-
gate and per request). As we move forward to Ver-
sion 6.0, a single infrastructure for capturing IT and

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

business-level events will enable higher-fevel mon-
itoring to occur as well as correlation across both 11
and business-level events.

Java management extensions. Status monitoring is
provided through the JMX MBeans that represent
the components of the system. The status of any par-
ticular component, such as a scrver or an applica-
tion, is available cither as an attribute of the MBean
or indicated by the presence or abscnee of the
MBean itself (the MBean is only registered when the
component is active). Status information can be
polled by querying the appropriate MBean, ora cli-
ent can register for notification when the status of
acomponent changes state. Status monitoring iscrit-
ical for understanding the current state of the cnvi-
ronment and is used to control critical functions such
as workload management. The ability to understand
status is also critically important in cnabling Web-
Sphere Application Server for on demand comput-
ing, allowing cxternal agents to understand which re-
sources arc available and make decisions on what to
do next.

Monitoring of problems is provided primarily
through two mechanisms. The first, and most obvi-
ous, uses log files. Each server in the cell maintains
a log of events and errors occurring in the server.
An activity log of critical cvents happening inall scrv-
ers on a particular machine is also maintained. The
contents of both of these logs are available on the
local machine and remotely via IMX. These logs al-
low a detailed understanding to be gained of prob-
jems that arc occurring in the system.

Additionally, critical events that occur in the system
arc also exposcd via JMX notifications, which pro-
actively notify administrators of problems as they oc-
cur. Furthcrmore, external agents can register for
notification when critical problems occur. This no-
tification capability is important in cnabling on de-
mand management of the WebSphere Application
Server environment by allowing the system 1o pro-
actively respond to problems as they occur. The no-
tification also simplifies production management of
a WebSphere Application Server system by remov-
ing from the administrator the burden of having Lo
constantly search log files for problems.

Performance monitoring allows a uscr to understand
the performance characteristics of the running ap-
plication in terms of the components that comprisc
the application and the systcms the application is us-
ing. Performance monitoring also provides the ba-

HERNESS, HIGH, AND McGEE

225

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

sic data necessary to determine how to provision and
rebalance the on demand system. It provides real
load information from the scrvers to the workload
manager to help it decide how to distribute work-
load among a cluster of WebSphere Application
Scrver servers. There are two types of performance
information: aggregate performance metrics and per-
request timing data.

Performance Monitoring Infrastructure. Aggregate
performance data are provided through a system
called the Performance Monitoring Infrastructure
(PM1).* PML is comprised of a set of configurable
counters at critical points in the WebSphere Appli-
cation Server runtime that keep track of statistics
for all requests that pass through that part of the Sys-
tem. PMI can keep simple counters or compute run-
ning averages. PMI counters exist in all of the major
subsystems of WebSphere Application Scrver, such
as the Web container, 1B container, connection
managcr, transport layers, and session management
system. PMI keeps track of, for example, the average
response time for a particular servlet or the average
wait time to obtain a JDBC** (Java Database Con-
nectivity) connection from a conncction pool.

‘The PMmI counters can be configured to control which
and how much performance data arc collected by
the runtime. Pm1 is designed to place as little extra
load on the system as possible, allowing it to be en-
abled in a production cnvironment. But, of course,
there is some overhead in collecting performance
data, and thercfore, it is not advisable to have all PMI
counters on all the time. Both the configuration of
PMEand the data collected are available through yvx
MBecan statistics. As a result, there is a standard way
to access performance metrics from any WebSphere
Application Server server.

WebSphere Application Server provides a tool called
the Tivoli Performance Viewer (sce Figure 6) that
allows a user to explore and record the performance
data being collected by a server. However, because
PML is exposcd through JMX, any external program,
such as a Tivoli product or the on demand manager,
canaccess the performance data collected by a Web-
Sphere Application Server server.

Application response measurement. Pcr-request
data are provided by PMI Request Metrics (PMI-RM).
PMI-RM collects data by timing requests as they travel
through WebSphere Application Server compo-
nents. These data help to identify runtime and ap-
plication problems. PMI-RM logs the time spent at

226 HERNESS, HIGH, AND McGEE

major subsystems, such as the Web server plug-in,
Web containcr, enterprise bean container, and da-
tabasc. Thesc statistics arc recorded in logs and can
be written to Application Response Measurement
(ARM)™ agents used by Tivoli and other vendor mon-
itoring tools. ARM is an Open Group standard com-
posed of aset of interfaces implemented by an ARM
agent that provides elapsed-time statistics for pro-
cess hops. WebSphere Application Server does not
provide its own ARM agent but will work with an ARM
agent from Tivoli, Hewlett-Packard Development
Company, L.P., and others. Support for ARM is crit-
ical to on demand computing because it allows a stan-
dards-based mechanism to understand response time
for application requests, which can then be used to
control provisioning and workload management
configuration.

Using this continuous flow of data, the on demand
manager can analyze the system on the basis of a
knowledge repository and make recommendations
on how to reprovision the system to mect a policy
or goal.* Monitoring provides the input that drives
the autonomic naturc of on demand computing.
WebSphere provides that crucial flow of informa-
tion through standard JMX interfaces from the pmi
system, and through JMX cvent notifications when
critical errors occur. This flow of information is then
used to make dynamic workload management deci-
sions and to reconfigurce the system on the basis of
administrative policy.

Performance advisors. One cxample of sclf-tuning
that exists in WebSphere Application Server Ver-
sion 5.0 is the performance advisors™ (sce Figure
7). By collecting data from pMmI over time and an-
alyzing the data using rules that have been built
through experience with real world applications, the
performance advisors make conerete recommenda-
tions on system-configuration changes that will re-
sult in better performance for the application.

This is a small example of how the WebSphere plat-
form builds on its own capabilities to provide higher-
level functions. Although the current performance
advisors do not transparently implement the sug-
gested actions, they represent a step toward the vi-
sion of a fully autonomic self-tuning system. In a fully
autonomic system, the gencrated recommendations
will be applied to the running system automatically
while the system is in opcration, cnabling the closed-
loop feedback that is the hallmark of on demand
computing.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

Figure 6 Viewing PMI data through Tivoli Performance Viewer

& Tivoli Performance Viewer

TTQ350PM 23259PM @3350PM X34:59PM X35:59PM S3B:SIPM 937.59PM

Name Description Vailue
CPU Utization ‘Average cpu uliization since last query 20|
Average CPU Utiization |Average cpu utiization since the data is enabled 7742
Free Memory of free memory (in KB) 147440

Workload management

Much of on demand computing is about improving
the utilization and efficiency of cxisting computing
facilities. A key element to this aspect is ensuring
workloads are balanced; that is, they are distributed
over those facilitics in a way that obtains maximum
utility from them, softens the impact of large spikes
in workload, and yet ensures computing goals are
being met. This is achicved in WebSphere Applica-
tion Server through workload management services
that classify inbound workload, measure the utiliza-
tion and availability of computing facilities, and pri-
oritize and distribute the work.

Clusters. Workload management in WebSphere Ap-
plication Server is based on the fundamental con-
cept of a cluster. A cluster is composed of two or more

application server instances; each instance is hosted
in its own Java Virtual Machine (JvM*¥) process.
Each application server instance has the same con-
figuration; that is, it is configured to host the same
set of Java applications, to use the same resource
definitions in the same domain, and so forth. The
cluster operates cffectively as a single logical server.
Individual server instances within the cluster can be
stopped and started, or the cluster can be started and
stopped as a whole. Likewise, applications config-
ured to run on the cluster can be stopped and started,
resulting in stopping or starting the application run-
ning on all instances of the application server in the
cluster. From the perspective of the client, however,
it appears as though therc is just one instance of the
application running on one application scrver
instance.

HERNESS, HIGH, AND McGEE

221

er. Further reproduction prohibited without permissionyw\w.manaraa.com

Figure 7 Example of Performance Advisor display

@) Performance Advisor Message Detail

Message [RHIGHLT2 -» server1] TUNEO303wW: Number of threads
working in Orb Service Thread Pool is low, but the system

does not seem to be under stress.

The CPU utilizetion of this system is unusually low. Please
run the performance advisor with a representative
workload. If CPU utilization is expected to be this low, then
consider decreasing the size of the thread pool. If not, the
hottleneck may exist elsewhere in the system, preventing
work from reaching the Websphere Application Server.

Description

User action 1o decrease the size of the thread pool: For the Web
container, click: Application Servers » Server = Web
Container = Thread Pool.

For the ORB Service, click: Application Servers » Server »

ORB Service » Thread Pool.

Detail Pool utilizetion: 0%.

CPU usage: 19%.

Mumber of threads in pool: 0.
Average number of threads: 0.

Close

Multiple application server instances can be hosted
on a single computer (a vertical cluster) or on dif-

Similarly, horizontal clusters let a workload be dis-
tributed over more computers. Greater distribution

ferent computers (a horizontal cluster), or some com-
bination of the two.* Vertical clusters arc valuable
for better utilization of the computer when the op-
crating system otherwise constrains the availability
of resources on a process boundary. For example,
if a 1vM process is pinned to a single processor on
asymmetric multiprocessor (SMP) computer, intro-
ducing additional application server instances allows
the process to utilize other CPUs on the same com-
puter (presuming they would be assigned to the other
processors). Or, if the operating system limits the
numbcr of connections that can be formed to a single
process, then an increase in the number of effective con-
nections to the computer can be made by increasing
the number of application server instances.

might be necessary if all the memory or cpU cycles
that can be allocated to the application scrvers on
one computer arc being used.

As with the rest of the topology, the configuration
of the cluster (that is, the number and location of
application scrvers in the cluster) is retained in the
configuration repository of the WebSphere Appli-
cation Server management facility. The application
server members in the cluster can be added or re-
moved through any of the WebSphere Application
Server management uscr, programming, or com-
mand-line interfaces, associating them with an ex-
isting or new cluster, or cven configuring the appli-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

Figure 8 Workload management controller

CONFIGURATION CHANGES s>

REQUEST SOURCE
WLM ROUTER

ROUTING
TABLE

WLM CONTROLLER
OPERATIONAL GOALS ey

seemeennhe REQUEST FLOW
ey CONTROL FLOW

cation server instance to operate as a stand-alone
server (independent of any cluster).

The workload management (WLM) facility is being
updated in WebSphere Application Server Version
6.0. As in Version 5.0, wiLM will build on the fun-
damental premisc of a cluster. The rest of the fa-
cility is composed of three parts: the host agent, work-
load controller, and workload router as depicted in
Figure 8. The host agent is responsible for detecting
how much utilization is being obtained from a set
of computing resources. Within WebSphere Appli-
cation Server, resource utilization is measured and
collected through the PMI. PMI acts as the host agent
for WebSphere Application Server resources. Other
workload sensors may supplement or replace PML
This is most applicable when considering that the
actual utilization of the computing facilities may be
loaded by other data management, on-line transac-
tion, batch, and other specialized middleware and
programs. WebSphere Application Server cannot,
by itsclf, account for all of the workloads that may
be assigned to the available computing facilities tar-
geted to other middleware products.

The workload controller is responsible for coalesc-
ing the topology of the cluster configuration, the uti-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

WEBSPHERE
MEASUREMENTS

t &

V'

WEBSPHERE
DEPLOYMENT
MANAGER/NODE AGENT

Il

WEBSPHERE
. APPLICATION SERVER

HOST AGENT

> g

HOST MEASUREMENTS

OPERATIONAL TOPOLOGY

lization measurements of the available computing
facilitics, the operational goals of the on demand
computing environment, and the classification ofan
inbound workload to make a routing decision for that
workload. It retricves configuration information
about which application server instances arc assigned
to a given cluster, their end-point addresscs, and pri-
orities and weights from the deployment manager
for a WebSphere Application Server cell. PMI con-
tinuously updates the workload controller with in-
formation about available application scrver in-
stances and their utilization. All of this information
is factored into the routing tables.

The workload controller then feeds routing infor-
mation to the workload router, which then priori-
tizes and directs that inbound workload to an ap-
propriate server instance within the cluster. Lower-
priority work is queued behind higher-priority work.
Higher-priority work is moved higher in the dispatch
queue, adjusting to priority and policy demands.

It is usually not enough to just consider any given
work request by itself. Most work requests oceur
within a broader context; that is, they are normally
part of some larger unit of work, session, or trans-
action. This context implics something about the

HERNESS, HIGH, AND McGEE

229

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

state of the target object (i.c., the component on
which the work is to be run). In many cases, the state
ofa target object will be cached in memory in a given
application server instance for the duration of that
unit-of-work period. The state is loaded in responsc
to the first request that initiated the unit of work.
[t remains in memory until the unit of work is com-
pleted. Subsequent requests within the unit of work
arc best served at the application server on which
the unit of work was started and are said to have af-
finity to that application scrver.

Furthermore, a given target object may, in turn, have
cascading dependencics on other downstream ob-
jeets. If a routing decision is made to send a work
request to a target object on one application server
and then that target object in turn calls another ob-
ject that requires a significant amount of computing
resources, the workload controller needs to be aware
of the situation and consider it in its routing deci-
sion. If the downstream object is hosted on a com-
puter that is overutilized at the time of the request,
it may be appropriate to prioritize other work ahead
ofit, which doces not depend on the bottlenecked re-
source. This is discussed further in the section “Ap-
plication profiling.”

The workload controller is gencrally responsible for
determining whether a cluster has the correct amount
of capacity allocated to it for the workloads that are
being routed to it. If demand surges at a certain time
ot day, the workload controtler will examine the ca-
pacity management policies and, presuming more ca-
pacity is warranted, it will direct the WebSphere Ap-
plication Server management infrastructure (o
increase the capacity of the cluster by adding more
application server instances to the cluster. Con-
versely, if capacity is needed elsewhere, it will real-
locate capacity from a cluster that has an excess by
removing application server instances from the clus-
ter. This capability is being added in Version 6 with
relatively simple policy processing support. It will be
possible to plug in more sophisticated policy man-
agement facilities such as those being developed by
Tivoli.

However, an application server instance cannot be
taken off-line without potentially affecting the in-
fight requests associated with that server instance.
WebSphere Application Server Version 5.0 cmploys
atransactional quicscence mechanism that will block
new requests from being dispatched on a server, but
will allow previously in-flight transactions to be com-
pleted. That includes letting new requests enter the

230 HERNESS, HIGH, AND McGEE

server if they are part of an alrcady cxisting trans-
action. The additional requests likely will need to
be completed before the transaction can be com-
pleted successfuily.

WebSphcere Application Server Version 6.0 will of-
fer the same support for workload, aflinity, and ca-
pacity management for all the major application pro-
tocols supported by the application server, including
HTTP messages carrying Web-application and Web-
service requests, RMIIHOP messages for 1B requests,
JMS, and the underlying protocol of the WebSphere
Application Scrver messaging engine for asynchro-
nous messaging and notifications. Workload will be
routed for messages flowing through all clements of
a WebSphere Application Server network, includ-
ing the proxy server, Web server, Web services gate-
way, in-nctwork messaging engines, and the appli-
cation server itsclf.

Application profiling

12LE promises to allow the building of reusable and
shared components hosted in a managed cnviron-
ment that maintains a separation between the bus-
iness logic and the underlying infrastructure. One
consequence of this promisc is that the component,
and especially the underlying container assigned (o
manage that component, must be preparcd to be
used under a varicty of different conditions.

This promise, of course, also requires that the con-
tainer know something about the dependencies that
cach object has on other objects. In some cases, an
object may have a dependency on another object but
only excrcise that relationship occasionally, perhaps
depending on input arriving with the request.

To understand how different clients can use the same
shared component ditferently and how such use will
affect the management of a component, consider the
following example. Imagine that a customer Account
object—something that maintains the balance of the
account and has operations for getting that balance
and crediting or debiting the account— has been im-
plemented. A banking application needs very accu-
rate balance information. The container should re-
rcad the balance data from the underlying databasce
for cvery operation on that Account object, lest the
balance were changed by some other activity within
the information system.

[n contrast, a demographic analysis application might
be building statistical information about account

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

value trends for a set of customers with a given set
of attributes. The demographic analysis application
does not need absolutely current balance informa-
tion, but does need to optimize the path length for
obtaining balance information over a potentially
large number of accounts. Thus, if the balance value
is already cached in memory somewhere and is not
too old, it should be returned, without rercading the
balance from the disk (an operation with a longer
path).

A third application may be responsible for comput-
ing interest on the average balance of the Account
object over a period of time. This application will
need to traverse the related AccountHistory object.
The container should read the state of the rclated
AccountHistory objects at the same time that it is
rcading the state of the Account object.

To ensure maximum efficiency in the information sys-
tem, while also fulfilling the integrity requircments
of the application, the container necds to know some-
thing about the client and what it expects. Informa-
tion about whether a given client is likely to usc an
object in a certain way, or that causcs it to exercise
a known relationship, can be associated with an ap-
plication profile. The task identity for the client is
correlated by the runtime with an application pro-
file* that represents its usage pattern. The runtime
containers then will manage the object accordingly
for any requests coming from that client. The ap-
plication profile is a way of expressing usage poli-
cies and associating them implicitly with the target
objcct. The application does not have to explicitly
code the management of the components it uscs.

Policies within the profile can be set to govern which
object relationships arc likely to be exercised and
therefore which related objects to preload, whether
the use of the object is likely to result in updating
its state (and therefore the isolation policy that
should be applicd to its state in the data system), the
rate at which clements of the results sct are going
to be consumed (and therefore the optimal prefetch
size), the currency requirements for the state, and
several other issues. The result is to dramatically im-
prove the efficiency of the overall system.

High availability and failover

On demand computing is not just about responding
to fluctuations in demand against available capacity
based on a set of policy goals. Even in an on demand
computing center, computers do and will fail unex-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

pectedly. Both planned and unplanned outages arce
a part of managing a large data center. Actually, the
probability of some computer in the data center be-
ing out of scrvice at any given moment goes up as
the number of computers in the center increases.

WebSphere Application Server handles outages with
the same clustering technology that it uscs for on-
line workload management. When a computer fails,
that computer’s capacity is simply removed from the
list of availablc computing capacity for the system,
and workload is routed to other on-linc computers
in the information system. When failed computers
are brought back on-line, they arc automatically
added back into the available resource list and arce
then utilized as soon as capacity requircments sug-
gest shifting workload to those computers.

[t is common when a computer fails suddenly to have
the work that was in flight on that computer become
orphaned. A good example of this involves message
queues.” Assume that a particular queuce manager
is configured (o run in a particular application server
instance for messages that have accumulated in a par-
ticular queue and persisted in a queuc associated with
that queuc manager. If the computer on which that
qucue manager is located fails, none of the messages
that had been queucd for the queue manager will
be processed until that computer and queue man-
ager are brought back up. Whereas on the one hand,
messaging systems do not generally presume any par-
ticular temporal assurances, orphaning these mes-
sages for a long period of time could have an ad-
verse affect on the customer’s business. On the other
hand, multiple queuc managers should not be op-
crating on a message queue. Doing so would require
complex coordination between them to ensure that
cach message is processed only once. (One would
not want the same debit message removing money
from one’s account twice, for example.) Coordinat-
ing these kinds of assurances between two or more
queuc managers operating on a single shared mes-
sage queue can be very expensive.

In an on demand computing system, it is cxpeeted
that the queue manager will be automatically recon-
figured to run on another computer, possibly on an
application scrver that is already running. The mes-
sages in the original queuc should be reassigned to
the new instance of that queue manager. WebSphere
Application Server will be adding support to do ex-
actly this by managing ownership within a cluster of
queuc managers. At any given time only one queuc
manager will operate on a given message queuc (al-

HERNESS, HIGH, AND McGEE

231

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

Figure 9 Basic WebSphere Application Server clustering topology

DMz

WEB CLIENTS

INTERNET i
WEB SERVER

FIREWALL
(WITH FAILOVER)

FIREWALL
(WITH FAILOVER)

though other queue managers in the cluster can be
operating on other queucs). If any queue manager
tails, another queue manager will be assigned to op-
crate on that message queue, including recovering
any failed transactions that may have been in flight
on the queue manager that failed.

The worst kind of failure that a data center can suf-
feris a disaster that brings down the entire data cen-
ter. For this situation, many on demand cnterprises
will operate two or more data centers that are geo-
graphically dispersed, but interconnected by broad-
band channcls. WebSphere Application Server al-
lows the interconnection of two or more cells located
in different data centers. One cell can act as a fail-
over site for a cell in another data center. If all of
the resources in a cluster in one cell fail, then the
workload clients will reroute workload to the other
data center. This action, of course, presumes that
other provisions have becn made to synchronize or
transfer the data of the underlying data system from
onc site to the other.

The clustering, workload distribution, failover, and
recovery mechanisms built into WebSphere Appli-
cation Scrver are all essential to ensuring that the
information system is always available, balanced, and
responsive to varying computing needs and fluctu-
ations in utilization and capacity, and thus is on
demand.

232 HERNESS, HIGH, AND MoGEE

Reproduced with permission of the copyright owner. Further reprod

CLUSTERED
WEBSPHERE
APPLICATION
SERVERS

y ! MAINFRAMES

iy |0
i i

INTRANET

5

b

£ CLUSTERED
DATABASE
SERVERS

Edge computing

The typical information computing topology is cvoly-
ing. Atone point, the standard topology for Web and
busincss computing consisted of a browser on a desk-
top computer, attached through the Internet or in-
tranct, through a firewall, to a Web scrver, perhaps
through a second fircwall to the application scrver
hosting Web and business components, and finally
attached to a back-end data system as depicted in
Figure 9. Perhaps the browser was actually a client
application running on a handheld device or mobile
telephone. Perhaps an Internet Protocol (1p) sprayer
was injected in front of the Web server to statically
distribute workload. But the nature of many of these
components is changing. Morc often, customers are
introducing forward-proxy caching scrvers in front
of their Web scrvers, or even out in the network to
cache the content of Web pages for performance and
scalability. Web servers themselves are being en-
hanced with caching, sccurity, and intrusion-detec-
tion features to guard against denial-of-service at-
tacks. The role of Web services has introduced the
need for gateway servers to convert between exter-
nal and intcrnal networks and to hide private ser-
vices. Messaging engines are being inserted into cor-
porate networks to perform mediation, routing, and
flow control. Data systems are being clustered for
scalability. Even business applications arc being de-
composed and distributed to multiple scparate ap-
plication servers.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

uction prohibited without permissionywayw.manaraa.com

These changes are altering the shape of traditional
topologies.* The roles of many network components
are evolving and, in some cases, converging. Alrcady,
the rolc of the application server is cvolving to in-
clude serving some of the static content that is in the
traditional domain of Web servers. Proxy scrvers are
sharing some of the same security and caching tech-
nologics that are often found in firewalls and appli-
cation servers. Even browsers are being extended to
support hosting of business components for local-
ized, mobile, and off-line processing.

In addition to this evolution, the relationships and
management of all of these components are crucial
to maintaining an on demand computing facility. If
different Web servers are assigned to handlc the re-
quest traffic for different applications, and those ap-
plications are being moved around the on demand
data center in response to fluctuations in utilization
and capacity, the Web servers need to be reconfig-
ured accordingly. If proxy scrvers cache Web con-
tent for specific applications, thcy may need to be
flushed if the application is stopped or taken off-linc.
If the workload balancing policies for an application
are changed, then the workload routers and gate-
ways need to be updated.

WebSphere has responded to this situation by re-
engincering the WebSphere caching proxy (also re-
ferred to as the edge server), IBM ITTP Server (11HS),
Web Services Gateway (WsGW), and WebSphere
messaging server to fundamentally build on the same
server underpinnings used in WebSphere Applica-
tion Server. Doing so yields two benefits. These ad-
ditional servers can exploit the same underlying man-
agement infrastructure that is integral to WebSphere
Application Server, and by extension, then, these
servers can be configured and managed along with
WebSphere Application Server within a single to-
pology configuration model.

The entire breadth of the WebSphere Application
Server programming model, including the J2EE pro-
gramming model for Web and business components,
Web services, handlers, mediations, and plug-ins, can
be enabled or disabled for use anywhere in the net-
work. In this way, function can be placed where it
is needed, based on the specific combination of needs
of the customer, whether that is to gain better re-
sponse time performance in the network or in branch
offices, or to extend the functionality of the DMZ (see
Figure 9) with system services written according to
the same programming model used by business ap-
plication developers, or to apply additional sccurity

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

controls or workload classification at the back end
of the internal networks—on demand.

This rebasing of the periphcral servers on a com-
mon runtime infrastructurc and the enabling of the
full breadth of the programming model at various
positions within the topology enables a new business
model: on demand edge computing. Scveral vendors
arc already building large delivery networks within
the backbone of the Internet to leverage application
servers. Akamai Technologics, Inc. is an obvious cx-
ample of such a vendor.* They are running a nct-
work of some 15000 servers in the Internet, all sup-
porting WebSphere Application Server servers. Web
applications can be built and arranged to be hosted
by Akamai in their network. The resultis service de-
livery that is much closer to the Internet end users
of an enterprisc, creating a much more responsive
experience for them, and leveraging the capacity of
their vast network in response to spikes in demand.

Several changes have been made to WebSphere Ap-
plication Server to enable this type of infrastructure.
In particular, one can imagine that Akamai would
prefer not to have all of the applications they arc
hosting for their broad set of customers installed on
every one of their 15000 servers. Generally, the dis-
tribution of a given application is rclatively sparse
most of the time, based on where that application
is actually being used at any given time in the world.
For example, if the customer had hosted a trading
application in the wide arca nctwork, it would be ex-
pected that the application is to be used by custom-
ers primarily after work, in the evening of their own
Jocal time. This peak utilization rolls around the
world throughout the day. The application may, in
fact, be infrequently used for some 8 hours a day
at any given point in the world.

Edge server providers would prefer not to have the
application installed and consuming server resources
when it is sitting idle. They actually want to reniove
the application from the computers where it is not
being used. Converscly, they want to be able to in-
stall the application and bring it up to a running state
very quickly when demand does pick up for the ap-
plication. For this, WebSphere Application Server
has introduced support to preinstall an application,
resolve its reference bindings to dependent re-
sources, then allow the application to be “zipped up”
and subsequently removed from the computer. Later,
when the customer needs to reinstall the application,
it can simply unzip the application into its original

HERNESS, HIGH, AND McGEE 233

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

directories and point WebSphere Application Server
to the presence of the application.

Lidge server providers arc also concerned about ap-
plications inadvertently consuming underlying server
resources unnecessarily, and are concerned about re-
ducing the risk of applications destabilizing their ex-
ccution c¢nvironment. For both of these reasons,
WebSphere Application Scrver introduced config-
uration options that turn off automated deployment
and generation mechanisms. In particular, the au-
tomatic Jsp compiling function within WebSphere
can be turned off. When automated Jsp compiling
is turned on, if an application is loaded and a JSP is
referenced that has not been compiled, WebSphere
will automatically compile it and proceed to service
the request. However, the compilation time takes
away from the exccution cycles of other requests and
delays the outstanding request while the compila-
tion takes place. Further, the fact that the Jsp had
not been previously compiled in an environment
where the application should have alrcady been pre-
installed, and where the application is used fre-
quently, raises questions: Why is the ISP not alrcady
compiled? The biggest concern is that someone may
access the application and change a Jsp—perhaps
inadvertently, as part of a deployment step that is
executed out of sequence. There is a concern that
this sort of mistake may imply a result that will fail
in the exceution environment. Thus, it is possible to
turn off automated compilation to remove on de-
mand preparation of the application with the intent
of increasing the efficiency and availability of the on
demand computing environment.

Grid computing

Computing grids represent a core topology structure
for on demand computing, and even more so in util-
ity computing cnvironments. The idea that a data
center can be composed of a large collection of com-
puting resources interconnected in a grid, or that a
data center can be interconnccted with other data
centers to extend the grid even further, and then be
able to dynamically allocate resources from that egrid
in response to on demand requirements for a given
sct of applications is a central theme in on demand
computing. We have already discussed how Web-
Sphere Application Scrver provides the virtualiza-
tion capabilitics and programming model that en-
able applications to be deployed and configured
dynamically across the grid infrastructure.

The relationship of grid computing to WebSphere
Application Scrver is more specific. The Global Grid

234 HERNESS, HIGH, AND McGEE

Forum (GGr)* defines the Open Grid Service in-
frastructure (0GSi).* OGSi, in part, defines extensions
to contemporary Web scrvices standards for state-
ful business components that can be deployed in a
grid computing infrastructure. In fact, these exten-
sions are very gencrally applicable to business ap-
plications, regardless of whether they are deployed
to a grid infrastructure or just a simple stand-alone
server. In many ways, the grid infrastructure is not
specific to grid computing; it just happens to intro-
duce a need for more general-purpose Web services
functions sooner than they arc being standardized
in the mainstrcam Web scrvices communities.

Nonetheless, because WebSphere Application
Scrver serves as the foundational underpinnings for
1BM's Web services runtime, it is, by extension, the
foundation for 0GSi. 1BM’s reference implementa-
tion of OGS is implemented on it.” Further, Web-
Sphere Application Server is internalizing the run-
time and component model support for grid services.
WebSphere Application Server is driving the stan-
dards work in Web services to ensure that grid ser-
vice components are fully cmbraced in those stan-
dards. The principles of service interface inheritance,
stateful services (resources), service references, ser-
vice state, soft-state life-cycle management and state
notifications, introduced by 0GSi, are being incor-
porated into the general-purpose Web services in-
frastructure and will be supported by WebSphere
Application Server and made available to a wide va-
ricty of deployment topologies, including those that
arc most associated with grid computing.

Concluding remarks

The role of information computing in businesses con-
tinues to grow. Few activitics of a modern business
are done without the automation and productivity
benefits that computers bring. For the most part, in-
formation computing is in principle a cost of doing
busincss—a necessary activity to remove the tedium
of repetitive tasks or to assist employees to perform
their jobs. Information computing has taken such a
strong hold on the basic ways in which businesses
operate that itis hard to imagine doing anything with-
out it. In this role, businesses need to be able to ob-
tain more utility from their investment in comput-
ing resources. They need to manage their computing
resourcces more cfficiently to be able to share re-
sources over a broader range of applications and to
be able to dynamically adjust the allocation of thosc
resources to different applications as demand for
cach application fluctuates throughout the day.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

We stand on the threshold of a major shift in the
role of computing—from being the foundation on
which businesses are built, to being the driving force
behind business competitivencss. On demand com-
puting will enable businesses to model their business
processes and from that be able to detect their own
business weaknesses and advantages. Through bus-
iness process modeling, a business can quickly ad-
just its processes o remove unnecessary activities,
or to improve its own competitive strengths, and ex-
pect that changes in that model will immediately re-
sult in changes to the underlying computing appli-
cations that implement those business processes.
Ultimately, on demand computing enables a busi-
ness to drive and respond to changes in its markets
at the rate at which changes occur in the market-
place. Enterprise computing moves from being sim-
ply a cost center weighted down by the complexity
of information systems to being a true cost-effective
assct for a business.

WebSpherc Application Server is at the leading edge
of this transformation, enabling the separation of
business logic from the underlying information tech-
nology needed to allow applications to be dynamic
and mobile. It virtualizes the computing environment
for these applications. It is instrumented to enable
the exccution environment for these applications to
be monitored, to allow provisioning managers to de-
termine what utilization they are obtaining from the
system, and then to adjust the system to improve its
efficiency. It supports clustering for workload man-
agement and availability and can be dynamically re-
configured to increase or decrease the capacity of
the different applications hosted on the application
server. It has built-in support for maximizing the ef-
ficient management of application components
based on different usage patterns for different cli-
ents. WebSphere Application Server is the founda-
tion for IBM’s strategy for on demand computing.

“Trademark or registered trademark of International Business
Machincs Corporation.

*#Irademark or registered trademark of Sun Microsystems, Inc.,
Open Software Group, Object Management Group, or Corpo-
ration for National Rescarch Initiatives.

Cited references and note

1. “Meet the Experts: Irving Wladawsky-Berger on E-business on
Demand,” developerWorks, IBM Corporation (February 2003),
hllp://www7b.sof[warc‘ibm.com/dmdd/library/tcchal'ticlc/
0302iwb/0302iwb.html.

2. T. Francis, I. Herness, R. High, J. Knutson, K. Rochat, and
C. Vignola, Professional IBM WebSphere 5.0 Application Server,

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

6.

9.

16.

ISBN 0-7645-4366-0, John Wiley & Sons, Inc., New York
(2002).

. WebSphere Application Server has become the leading ap-

plication scrver, gaining more markct share than any other
application scrver, including .NET from Microsoft Corpo-
ration and WebLogic from BEA Systems.

. E. Millard, “IBM’s WebSphere vs. Microsoft’s NET—Who's

Winning?” NewskFactor Network (July 30, 2002). hup:/
www.newsfactor.com/perl/story/ 18818 html.

. “How IBM IHopes to Waltz around Microsolt,” GRID Today

1, No. 4 (July 8, 2002), http://www gridtoday.com/02/0708/
100083.html.

M. LaMonica, “IBM Pulls Away in App Scrver Race,” C/Net
News.Com (May 6, 2003), http:/news.com.com/2100-1012_
31000046.html.

. U. Richter, L. Ostdick, and C. Dicp, Architecture for Virtu-

alization with WebSphere Application Server, Version 5, 1BM
Corporation (2003).

. R. Willenborg, K. Brown, and G. Cuomo, “Designing the

WebSphere Application Server for Performance: An bvo-
lutionary Approach,” IBM Systems Journal 43, No. 2,327-350
(2004, this issuc).

R. Bakalova, A. Chow, C. Fricano, P. Jain, N. Kodali, D.
Poirer, S. Sankarar, and D. Shupp, “WebSphere Dynamic
Cache: Improving J2EE Application Performance,™ IBM Sys-
tems Jowrnal 43, No. 2, 351=370 (2004, this issuc).

. C. M. Saracco, M. A. Roth, and D. C. Woltson, “Enabling

Distributed Enterprise Integration with WebSphere and D132
Information Integrator,” IBM Systems Journal 43, No. 2,
255-269 (2004, this issuc).

. R.WIlL S. Ramaswamy, and 1. Schack, “WebSphere Portal:

Unified User Access to Content, Applications, and Services,”
IBM Systems Journal 43, No. 2, 420430 (2004, this issuc).

. M. Kloppman, D. Koenig, F. Teymann, G. Pfau. and D.

Roller, “Business Process Chorcography in WebSphere—
Combining the Power of BPEL and J2EL.” IBM Systens Jour-
nal 43, No. 2, 270-296 (2004, this issuc).

. 1. Ponzo, L. D. Hassan, J. George, G. Thomas, O. Gruber,

R. Konuru, A. Purakayastha, R. D. Johnson, J. Colson, and
R. A. Pollak, “On Demand Web-Client Technologics,™ 1BM
Systens Journal 43, No. 2, 297-315 (2004, this issuc).

. S. M. Fontes, C. J. Nordstrom, and K. W. Sutter, “WebSphere

Conncctor Architecture Evolution,” IBM Systems Journal 43,
No. 2, 316-326 (2004, this issuc).

. F. Marinescu, EJB Design Patterns; Advanced Patterns, Pro-

cesses, and Idioms, ISBN 0-471-20831-0, John Wilcy & Sons,
Inc., New York (2002).

J. Adams, S. Koushik, G. Vasudeva, and G. Galambos, Pai-
terns for E-business—A Strategy for Reuse, ISBN 1-931182-02-7,
IBM Press (MC Press), Lewisville, TX (2001). Also see “1BM
Patterns for E-business; Navigating You to a New Gener-
ation of B-business Applications,” IBM Corporation, http://
www.ibm.com/developerworks/patterns/.

. P. Giangarra, “J2EE: Not Just a Language—IUs a Platform,”

Proceedings of SHARE 2001 (2001), http:/fwww.share.org/
proceedings/sh97/data/S3546.PDE.

. G. Desai, E. Sanchez, and J. Fenner, “Web Application Scrv-

ers Come of Age,” CMP Network Computing (July 23, 2001),
http:/Awww.nctworkcomputing.com/1215/121 St4.himl.

. Java Serviet Technology, Sun Microsystems, Inc., hitp://java.

sun.com/products/servict.

. JSR 168 Portlet Specification, Java Community Process, hitp:/

jep.org/en/jsr/detail 7id =168,

. JavaServer Pages Technology, Sun Microsystems, Inc., hitp://

java.sun.com/products/jsp/index.jsp.

HERNESS, HIGH, AND McGEE 235

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

20.

29

(o)
no

33.

34.

30.

37.

- W Appel, “Enterprise Architecture: An In-Depth Study,” Fn-

terprise: Architecture: Community, hitp:/Awww.cacommunity.
com/articles/openarticle.asp?11D=: 1840,

- RuSharma, B. Stearns, and T. Ng, J2EE Connector Architec-

ture and Enterprise Application Integration, ISBN 0201775808,
Addison-Wesley Publishing Co., Boston, MA (2001).

. G Van Huizen, “JMS: An Infrastructure for XMI.-Based

Business-to-Business Communication,” Java World (Febru-
ary 2000), htip:/fwww javaworld.com/javaworld/jw-02-2000/
Jw-02-jmsxml.html.

- I Andrews, Fo Cuarbera, 1. Dholakia, Y. Goland, J. Klein,

I Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, 1. Trick-
ovic, and 8. Weerawarana, “Business Process Exceution Lan-
guage for Web Services™ (May 5, 2003), ftp:/www-106.ibm.
com/developerworks/webservices/library/ws-bpel | 1pdf.
T.Mikalscn, 1. Rouvellou, and S. Tai, Reliability of Composed
Web Services from Object Transactions o Web Transactions.
[BM Corporation, T. J. Watson Rescarch Center, Yorktown
IHeights, NY, hitp/www.research.ibm.com/people/b/bth/
OOWS200 /mikalsen.pdf.

- M.Stevens, “Service-Oriented Architecture Introduction, Part

L7 developer.com (April 16, 2002), http:/www.developer.
comy/services/article.php/1010451.

- "Service-Oriented Architecture (SOA) Definition,” Barry &

Associates, hip/www.scrvice-architecture.compweb-services/
articles/service-oriented _architecture_soa_delinition.html.

- JoWaldo, G Wyant, A, Wollrath, and S. Kendall, A4 Note on

Dustributed Computing, SMLI TR-94-29, Sun Microsystems,
Inc., Mountain View, CA (November [1994), hitp:/frescarch.
sun.com/techrep/1994/smli_tr-94-29.pdf.

- D.Orchard, *Myth of Loose Coupling,” W3C (January 2003),

http:/flists.w3.org/Archives/Public/swww-ws-arch/2003J an/
Or15.btml.

- PoKovari, DL CoDiaz, I C.HL Fernandes, D. THassan, K.

Kawamura, D. Leigh, N Lin, D, Masic, G. Wadley, and P.
Xu, WebSphere Application Server Enterprise V3 and Program-
ming Model Ixtensions, $G24-6932, WebSphere Handbook
Scries, Redbooks, IBM Corporation (August 2003), http://
www.redbooks.ibm.com/redbooks/pdfs/sg246932.pdf.

- Java 2 Platform, Enterprise Edition (J2EE), Sun Microsys-

tems, Inc., http:/fjavasun.com/j2ee/index.jsp.

L. Williamson, “System Administration for WebSphere Ap-
plication Scrver V5, Part 4; THow to Extend the WebSphere
Management System (and Create Your Own MBeans),” /BM
WebSphere Developer Technical Journal, IBM Corporation
(April 23, 2003), http:/Awww.ibm.com/developerworks/
websphere/techjournal/0304_williamson/williamson.html. Sce
also Part 1, hitp:/fwww.ibm.com/developerworks/websphere/
techjournal/0301_williamson/williamson.himl.

J2EL Management Specification, Sun Microsystems, Inc.,

http://favacsun.com/j2ee/tools/management/reference/docs/
index.html.

- LK Lamand B Smith, “Jacl: A Tel Implementation in Java,”

Proceedings of the Fijth Annual Tel/Tk Workshop, USENIX,
Boston, MA (July 1997), http://www.uscnix.org/publications/
library/proceedings/tel97/ull_papers/lam/lan.pdf.
Overview of Jython Documentation, http:/Awww jython.org/
docs/index.huml.

IBM Tivoli Provisioning Manager and IBM Tivoli Intelligent
ThinkDynamic Orchestrator Enable on Demand Comput-
ing to Improve Server Utilization, IBM Corporation, http://
www-3.ibm.com/fsoftware/tivoli/products/prov-mgr/.

- “Meet the Experts: Ruth Wiltenborg on WebSphere Perfor-

mance,” developerWorks, 1BM Corporation (August 2003),

236 HERNESS, HIGH, AND MGGEE

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

http:/fwwwT7b.soltware.ibm.comfwsdd/tibrary/techarticles/
0308_willenborg/willenborg.html.

39. Application Response Measurement-ARM, The Open-
Group, htip:/fwww.opengroup.org/tech/management/army/.

40. M. Pistoia and C. Letilley, IBM WebSphere Performance Pack:
Load Balancing with IBM SecureWay Network Dispatcher,
S(24-5858, Redbooks, IBM Corporation (October 1999),
http:/fwww.redbooks.ibm.com/redbooks/pdis/sp 245858 pdf.

41. G. Trotta, “WebSphere 5°s New Tools: From Back-End (o
End-User,” ebiz (September 8, 2003), http:/www.cbizq.net/
Lopics/dev_tools/features/2708. htmi.

42. Clusiers, IBM Corporation (March 27, 2003), htp://publib.
boulder.ibm.com/infocenter/wss [help/index.jsptopic=/
com.ibm.websphere.nd.doc/info/ac/erun-srvgrp.himl

43. Application Profiles, 1BM Corporation (March 28, 2003),
http://publib.boulder.ibm.com/infocenter/wasinlofindex.
Isp?topic—/convibm.wasce.docfinfo/ce/appprofile/tasks/
tapp_assembleprofiles.btml.

44.S. Meridew, “WebSphere MO Clustering and 1ligh Avail-
ability,” Proceedings of SHARE 2002, (March 4, 2002), htp://
www.sharc.org/procecdings/sh98/data/S1103.PDF.

45. Computing at the Isdge, White Paper, Sun Microsystems, Inc.
(2003), http:/www.su n.com/serversfentry/IxS0/pdfswhitepapers/
whitcpaper.edge.pdf.

46. C. Moore, “Akamai, IBM Team Up for Ldge Computing,”
InfoWorld (May 8, 2002), hitp:/fwww.infoworld.com/articie/
02/05/08/020508hnibmakamai_I.himl.

47. C. Haley, “IBM, Akamai Boost *Virtual Capacity”,” ASPnews.
com (May 2, 2003), http://www.aspnews.com/news/article.
php/2200501.

48. “Global Grid Forum Overview,” GGF, hitp:/fwww.gpf.org/
[._About/about.htm.

49. 8. Tuccke, K. Czajkowski ct al, “Open Grid Scrvices Infra-
structure (OGSI) Specification,” GGE (April 5,2003), http://
www.gridforum.org/ogsi-we/draits/draft-gef-ogsi-gridscrvice-
29_2003-04-05.pdt.

50.J. Mears, “I1BM Adds Grid Computing to WebSphere,” Net-
work World Fusion (July 28, 2003), hup://www.nwiusion.
com/news/2003/0728grid. html.

Accepted for publication January 6, 2004.

Eric N. Herness [BM Software Group, 3605 Higlway 52 North,
Rochester, Minnesota 55901 (herness@us.ibm.com). Mr. 1lerness
is a Distinguished Engineer with the IBM Software Group. He
is currently the chicf architeet for WebSphere Business Integra-
tion. He is a senior member of the WebSphere Foundation Ar-
chiteeture Board and a member of the Software Group Archi-
tecture Board. He has also been heavily involved in championing
and implementing the EIB 2.0 specification in WebSphere, es-
pecially those parts that cnable container-managed persistence.
Mr. Herness has been involved in objeet technology and servers
that host objeets since 1989, In the carly years, he drove work on
object analysis and design methods, defining how to practically
leverage these concepts in large-scale software projects within and
outside IBM. He played a lead role in IBM’s implementations
of CORBA and the carly component model definition work that
planted many of the seeds we now sec flourishing in J2EE. He
holds a B.S. degree in business administration with an informa-
tion systems emphasis from the University of Wisconsin at Eau
Clairc and an M.S. degree in business administration from the
Catlson School of Management at the University ol Minnesota.
He has also been an adjunct computer scicnee Taculty member
at Winona State University.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Rob H. High, Jr. IBM Software Group, 11501 Burnet Road, Aus-
tin, Texas 78758 (highr@us.ibm.com). Mr. High is a Distinguished
Engincer and the chief architect for the WebSphere Application
Server foundation. e has 26 years of programming expericnce
and has worked with distributed, object-oriented, componcent-
based transaction monitors for the last nine years, including
SOMObjcct Server and Component Broker, prior to WebSphere.
He helped to define, and then later refing, the basic concepts of
container-managed component technology, which is now intrin-
sic to the 1B specification and implemented by WebSphere and
other J2EE application servers. He started his carcer with IBM
in 1981 in Charlotte, North Carolina, and during his 12 ycars there,
he primarily worked in the finance industry scctor as a developer
on the 4700 controller and on 4730 and 4736 ATM microcode
with responsibility for the device aceess methods. He led the de-
velopment of Application Foundation PC software for retail
branch computing, culminating in responsibility for the Finan-
cial Application Architecture. In 1993 he moved to Austin to lead
[BM’s participation in the Object Management Framework of
the Open Software Foundation, which led eventualty to his in-
volvement in SOM(’)bjcclskm, and later Component Broker and
WebSphere. Mr. High received a B.S. degree in computer and
information science from the University of California al Santa
Cruz in 1981.

Jason R. McGee [BM Software Group, 4205 South Miami
Boulevard, Research Triangle Park, North Carolina 27709
(jrmcgee@us.ibm.con). Mr. McGee is a Senior Technical Stafl
Member and chief architect {or the Base and Network Deploy-
ment versions of WebSphere Application Scrver. He s also a sen-
jor architect on the WebSphere Foundation Architecture Board
and an associate member of the Software Group Architecture
Board, focusing primarily on WebSphere family programming
model design issucs. He joined IBM in 1997 and has been a mem-
ber of the WebSphere Application Server product team since its
inception. e helped to define the concepts ol scrvlets and
JavaServer Pages (JSP) for processing Web presentation logic
on the server and has been instrumental in leading those parts
of the J2EE specification. He was responsible for the design and
implementation of the Web container in WebSphere Applica-
tion Scrver. Mr. McGee has been heavily involved in leading the
architecture for key parts of the WebSphere Application Server,
including the server runtime framework and the XML-bascd sys-
tems management architecture. He graduated with a B.S. degree
in computer enginecring from Virginia Polytechnic Institute and
State University in 1995.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 HERNESS, HIGH, AND MoGEE 237

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com

